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Ⅰ. Introduction

Recently, there has been an exponential increase

in the volume and diversity of data, prompting the

exploration of various strategies for efficiently

handling these substantial datasets. Based on this

situation, various methods have been proposed to

process large amounts of data efficiently. Among

these approaches, one notable technique involves the

introduction of quantum neural networks (QNNs)[1].

The development of modern machine learning (ML)

methods[2] and the appearance of noisy intermediate

scale quantum (NISQ) computing processors[3] have

driven this trend. QNN has shown competitive

performance comparable to classical neural networks

while using fewer parameters. Notably, QNNs have

an outstanding ability to process large datasets with

remarkable effectiveness, making them an attractive

option for addressing the problems posed by big data.

The effectiveness of QNN has been verified across

a spectrum of applications, including data

generation[4], classification[5,6], distributed learning[7,8],

and reinforcement learning[9-13], thereby highlighting

their remarkable utility.

Our considering QNN uses the concept of qubits

instead of the classic bits considered in classical

computers. Based on quantum mechanisms such as

superposition, which allows qubits to have

information of both 0 and 1 at the same time, and

entanglement, which is the interdependence of qubits

in different states. A QNN is composed of three

fundamental components: encoding, parameterized

quantum circuit (PQC)[14,15], and measurement, as

illustrated in Fig. 1. Traditional classical data, such

as MNIST data, must be transformed into a format

that can be used in quantum circuits before it can be

used directly in QNNs. The encoding layer

accomplishes this. The input data that have been
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transformed to qubits enter the PQC following the

encoding layer. In terms of multiplication between

hidden layers, PQC and traditional deep neural

networks (DNN) are similar. PQC commonly consists

of qubit rotation gates and controlled-X (CX) gates

(especially, controlled-NOT (CNOT) gate) which are

adjustable and fixed gates, respectively. The CX gates

generate entanglement computation, which affects the

performance of the QNN-based learning algorithms.

Finally, the quantum states generated from the PQC

are determined by measurement layer. Therefore, in

this paper, we focus on using different types of

quantum gates used in PQCs. We use the MNIST

dataset to analyze the performance differences of

various gates in classification.

The rest of this paper is organized as follows.

Section II introduces the preliminaries of quantum. In

addition, section III presents our approach. Moreover,

section V discusses the result of our approach. Finally,

section VI concludes this paper and presents future

research directions.

Ⅱ. Preliminaries

2.1 Quantum supremacy
Quantum computers can solve challenges beyond

their classical capabilities or execute noticeably more

quickly when they reach the state of quantum

supremacy. In October 2019, Google announced that

Sycamore, a 53-qubit quantum computer, had

demonstrated establishing quantum supremacy by

finishing a job in 200 seconds that would have taken

a supercomputer almost 10,000 years[3]. This practical

application demonstrates the dependability and future

development of quantum computing, subject to

algorithm and hardware innovation. Qubits, as

opposed to conventional bits, are the key of quantum

computing. Qubits can simultaneously represent 0 and

1 thanks to probability amplitudes, increasing data

density. They can represent 2n different states with

n qubits, allowing for parallelized computations and

data processing with fewer input parameters than with

bits.

First of all, a quantum Generative Adversarial

Networks (qGAN) is designed to integrate quantum

algorithms like Quantum Amplitude Estimation into

Generative Adversarial Network (GAN) architectures.

By utilizing qGAN, the gate complexity needed for

state loading can be significantly reduced[4]. In order

to demonstrate the potential of quantum computing

for effective classification tasks, two quantum

algorithms have been proposed that use the quantum

state space as a feature space for binary

classification[6]. Additionally, a novel Slimmable

Quantum Federated Learning (SQFL) framework is

also proposed that makes use of QNN to adjust for

altering communication conditions, demonstrating

improved classification accuracy and potential

benefits of quantum computing in distributed

learning[8]. Lastly, a quantum-based multi-agent

reinforcement learning (QMARL) approach for

effective multi-user cooperation and coordination in

autonomous mobility systems[9].

2.2 Quantum computing
In contrast to classical computing, a qubit is an

information unit representing the quantum state using

a dual basis, including |[16]. The quantum

state of a q-qubit system is represented by the

probability amplitudes of the 2q possible bases,

indicated as , a basic notion in quantum mechanics.

It may be expressed mathematically as an equation 1.

(1)

where denotes Hilbert space’s basis,

= 1, and q ∈ N [1, ∞)

It defines a superposition property of QNN where

a qubit can probabilistically denote the states of 0 and

1. In other words, the states of 0 and 1 are overlapped

Fig. 1. Structure of QNN
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before we measure a single qubit, and this is shown

by the symbol + However, following

measurement, it stochastically collapses to 0 or 1

depending on the values of and . Because of

the superposition, many inputs are processed when a

quantum operation is performed on the qubit. Qubits

can express many more states as a result than can

traditional classic bits.

2.3 Structure of QNN
Traditional classical input data cannot be directly

processed by the quantum circuitry of a QNN.

Therefore, in order to be integrated into QNNs,

traditional classical data must be transformed into a

quantum state by encoding. This process of encoding

not only facilitates data transformation but also

effectively addresses the constraints imposed by the

limitations of Noisy Intermediate Scale Quantum

(NISQ) devices. The encoding method converts

classical bit information into quantum states while

preserving the essence of raw data within the initial

quantum states, thus paving the way for subsequent

quantum processing.

The PQC plays a crucial role by creating

entanglement between the qubits and iteratively

growing trainable parameters. PQC consists of

quantum gates that execute quantum operations.

Quantum gates are represented through unitary

matrices, orchestrating the evolution of qubit states,

and enabling their manipulation and transformation.

The composition of these quantum gates encompasses

both adjustable rotational and fixed gates (i.e., CX

gates). Within the PQC framework, the encoded

quantum state undergoes processing, whereby qubits

become strongly entangled through the employment

of CX gates. Thus, depending on the type of gate,

qubits are transformed by performing entanglement,

disentanglement, and rotation.

The measurement procedure ends with creating the

ultimate output generation. Before measurement, the

quantum state remains in a superposed and, therefore,

an inherently unstable state. It is through the act of

measurement that this instability is resolved,

effectuating the conversion of the quantum state into

classical data.

2.4 Quantum gate
A quantum gate is a quantum computing process

that manipulates and transforms quantum states. To

modify the quantum state of qubits, quantum gates

are used. Quantum gates function similarly to logic

gates in classical computers, but quantum mechanics

determines their operation. The unitary matrix is used

to represent these quantum gates[17]. There are various

types of gates, the specific gates that will be used

in this paper are as follows.

The RX gate is a rotation gate for one qubit used

in quantum computing. This gate is used to manipulate

and control quantum bits by performing a rotation

about the X-axis. When the RX gate is applied, the

input qubit is rotated about its center around the

X-axis according to a given angle. The angle of

rotation is determined by the parameters applied to

the gate.

(2)

where q denotes the constant values of the rotation

angle of RX gate.

In addition, the RY gate is a rotation gate for one

qubit used in quantum computing. This gate is used

to manipulate and control quantum bits by performing

a rotation about the Y-axis. The RY gate has one

parameter, q, which determines the angle of rotation.

Depending on the rotation angle q, the state of a

quantum bit can be changed, which can be used to

construct various quantum algorithms. The RY gate

can be combined with other rotational gates to form

complex circuits.

(3)

where q denotes the constant values of the rotation

angle of RY gate.

Moreover, the RZ gate is a rotation gate for one

qubit used in quantum computing. This gate has a

single parameter, and depending on that parameter,



논문 / Effect of Gate Variations on MNIST Classification in QNN: Experimental Study and Analysis

257

it rotates the qubit about the Z-axis by a given angle.

RZ gates are used to control and manipulate quantum

information. When an RZ gate is applied, the input

qubit is rotated around the Z-axis by a given angle.

The angle of rotation is determined by the parameters

applied to the gate.

(4)

where q denotes the constant values of the rotation

angle of RZ gate.

Finally, the CX gate (i.e., controlled-X gate or

CNOT gate) has two qubits and consists of a control

and a target bit. Depending on the state of the control

bit, it performs an X-gate action on the target bit. In

addition, the CX gate entangles multiple qubits by

executing the XOR operation on two qubits. For

example, if the control bit is 1 and the target bit is

in the state, the target bit changes to the state.

In addition, if the control bit is 1 and the target bit

is in the state, the target bit changes to the

state. Finally, if the control bit is 0, nothing happens

to the target bit.

(5)

2.5 Entanglement
As qubits pass through the PQC and undergo

quantum operations, they become entangled with each

other. Entanglement signifies a strong correlation

between two or more qubits, wherein the quantum

states of these qubits are interdependent. In addition,

describing the state of one qubit independently from

the others becomes infeasible. Consequently, the

degree of entanglement depends on the selection of

quantum gates, which can exert a notable influence

on the performance of the quantum system.

Mathematically, when two states are inseparable and

unfactorizable, the state is called entangled. For

example, (6) could be factorized. However, (7) could

not be factorized, so this matrix is entangled. Qubits

may become entangled with CX gates in a system

with numerous qubits.

(6)

(7)

Ⅲ. QNN for MNIST Classification with 
Differential Gates

We select RX, RY, RZ gates which are typical

rotation gates, and the CX gate which creates

entanglement in PQC as shown in Fig. 1. We use a

set of gates consisting of the six selected gates:

RXRYRZ, RYRYRY, RYRYCX, RYRYRYCX,

RYRYCXCX, and RXRYRZCX gate. In addition, by

using these gates, we conduct four experiments to

verify the effect of gate variations.

3.1 Quantum gate variation
Firstly, the RXRYRZ gate is constructed through

a sequential arrangement of three constituent gates,

such as the RX gate, the RY gate, and the RZ gate.

The RXRYRZ gate rotates the quantum state in

different directions (i.e., X-axis, Y-axis, and Z-axis).

In addition, the RYRYRY gate is constructed through

the sequential arrangement of RY gates, consisting of

a series of three RY gates applied in succession. Each

RY gate performs a rotation about the Y-axis of the

Bloch sphere, and when combined in sequence, these

rotations result in a collective transformation of the

quantum state of the involved qubits. Moreover, the

RYRYCX gate and RYRYRYCX are constructed by

sequentially arranging RY gates and a CX gate,

consisting of two or three RY gates followed by a

CX gate applied in sequence, respectively. This

configuration enables the controlled manipulation of

quantum states through rotations and entanglement

generation. Furthermore, the RYRYCXCX gate is

constructed through the sequential arrangement of RY
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gates and CX gates, comprising a series of two RY

gates followed by two CX gates applied in sequence.

This arrangement facilitates controlled rotations and

the establishment of entanglement patterns,

contributing to the controlled evolution of quantum

states. Finally, RXRYRZCX gate is constructed

through the RX gate, the RY gate, the RZ gate, and

CX gate. This allows for more complex quantum state

transformations by rotating and entangling in different

directions.

3.2 Four comparison
Firstly, comparison 1 consists of the comparison

between RXRYRZ and RYRYRY gate. We compare

the performance of these gates to verify the

performance difference between rotating gates.

Moreover, comparison 2 consists of a comparison of

the RYRYCX and RYRYRY gates. By comparing the

performance of these two gates, we can see the

difference in performance between using only rotating

gates and using a combination of rotating gates and

CX when the number of gates is the same.

Furthermore, comparison 3 consists of the comparison

between RXRYRZCX and RYRYRYCX gate. We

compare the performance of these gates to identify

performance differences due to the use of CX gates

and the diverse rotation directions. Finally,

comparison 4 consists of the comparison between

RYRYCXCX and RYRYCX gate. We compare the

performance of these gates to identify performance

differences due to the number of CX gates.

Gate RYRYRY RYRYCX RXRYRZ

Accuracy (%) 39.31 40.47 41.36

Gate RYRYRYCX RYRYCXCX RXRYRZCX

Accuracy (%) 44.79 48.00 54.56

Table 1. The result of average accuracy of gate variation.

Ⅳ. Results with four comparisons of 
experiment

This paper considers four comparisons between

quantum gates for evaluating the performance effect

of gate variations in QML. The experiments were

performed out using 3.8.10 Python and 2.0.0 PyTorch,

the Adam optimizer, 5 × 10-3 learning rate, 256 batch

size, and 100 epochs. Our proposed comparisons

consist of four parts, i.e., (i) Comparison 1 (refer to

Section 4.1), (ii) Comparison 2 (refer to Section 4.2),

(iii) Comparison 3 (refer to Section 4.3), and (iv)

Comparison 4 (refer to Section 4.4), respectively.

4.1 Comparison 1
In this section, we compare the performance of the

RXRYRZ gate and the RYRYRY gate. As shown in

Table I, the average accuracy of RXRYRZ and

RYRYRY are 41.36% and 39.31%. Therefore, the

RXRYRZ gate outperforms the RYRYRY gate. Fig.

2 (a) shows the experiment result of comparison 1.

Specifically, Fig. 2 (a) shows that the RYRYRY gate

exhibits a shifting pattern, and initially displays better

performance than the RXRYRZ gate until the 20

epochs. Beyond this epoch, however, there is a

noticeable change, with the RXRYRZ gate continually

exhibiting higher accuracy levels than the RYRYRY

gate. In addition, Fig. 2 (b) also shows that the

RYRYRY gate exhibits a shifting pattern until 25

epochs. Among this epoch, the loss convergence of

RXRYRZ gate is comparable to RYRYRY gate.

(a)

(b)

Fig. 2. Experiment result of comparison 1: (a) Accuracy,
(b) Loss.
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However, after 25 epochs, RXRYRZ gate has lower

loss convergence than RYRYRY gate.

4.2 Comparison 2
In addition, in this section, we also compare the

performance of the RYRYCX gate and the RYRYRY

gate. As shown in Table I, the average accuracy of

RYRYCX and RYRYRY are 40.47% and 39.31%,

respectively. Therefore, the RYRYCX gate

outperforms the RYRYRY gate. Fig. 3 (a) shows the

experiment result of comparison 2. Especially, as

depicted in Fig. 3 (a), until the 35 epochs, the

performance trajectory of the RYRYCX and

RYRYRY gates exhibited fluctuations and variability.

Beyond this epoch, however, there is a noticeable

change, with the RYRYCX gate continually showing

higher accuracy levels than the RYRYRY gate. In

addition, as shown in Fig. 3 (b), the RYRYCX gate

can see a rapid convergence of loss. However, it

seems to be less convergent than the RYRYRY gate.

(a)

(b)

Fig. 3. Experiment result of comparison 2: (a) Accuracy,
(b) Loss.

4.3 Comparison 3
Moreover, in this section, we also compare the

performance of the RXRYRZCX gate and the

RYRYRYCX gate. As shown in Table I, the average

accuracy of RYRYCX and RYRYRY are 54.56% and

44.79%, respectively. Therefore, the RXRYRZCX

gate outperforms the RYRYRYCX gate. Fig. 4 (a)

shows the experiment result of comparison 3.

Especially, as depicted in Fig. 4 (a), RYRYRYCX

gate initially displays better performance than the

RXRYRZCX gate until the 10 epochs. Beyond this

epoch, however, there is a noticeable change, with the

RXRYRZCX gate continually showing higher

accuracy levels than the RYRYRYCX gate. In

addition, as shown in Fig. 4 (b), the RXRYRZCX gate

can see a rapid convergence of loss, but still shows

less convergent than the RYRYRYCX gate until the

10 epochs. However, beyond this epoch, there is

noticeable change, which shows that RYRYRYCX

gate seems to be less convergent than the

RXRYRZCX gate.

4.4 Comparison 4
Furthermore, in this section, we also compare the

performance of the RYRYCXCX gate and the

RYRYCX gate. As shown in Table I, the average

accuracy values of RYRYCXCX and RYRYCX are

48.00%, and 40.47%, respectively. Therefore, the

(a)

(b)

Fig. 4. Experiment result of comparison 3: (a) Accuracy,
(b) Loss.
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RYRYCXCX gate outperforms the RYRYCX gate.

Fig. 5 (a) shows the experiment result of comparison

4. In particular, the RYRYCXCX gate outperforms

the RYRYRY gate at every epoch, as shown in Fig.

5 (a). In the case of RYRYCXCX of Fig. 5 (a), the

results reach saturation from the very early epoch.

However, as the epoch progresses, you can see that

the degraded performance from the initial accuracy

is achieved. However, in the RYRYCXCX gate,

where CX is added to RYRYCX, the significant

results are maintained in the initially achieved

performance until the end. In addition, as shown in

Fig. 5 (b), the RYRYCX gate can see a rapid

convergence of loss. However, it seems to be less

convergent than the RYRYCXCX gate.

Ⅴ. Discussion 

In this section, we discuss the result of the

experiment of comparison 1, 2, 3, and 4. The more

detail of discussion is as follows.

5.1 Discussion of comparison 1
As shown in Table I and Fig. 2, the RXRYRZ gate

outperforms the RYRYRY gate. Since each rotating

gate of RXRYRZ gate rotates the qubit state around

a different axis, RXRYRZ gate can perform various

state transformations. This is expected to allow for

more flexible quantum computation. The RYRYRY

gate, on the other hand, consists of successive

applications of the RY gate. In this case, it is limited

to successively rotating the state of the qubit around

the Y-axis. Since the number of axes that can be

rotated is limited, the versatility of quantum

operations can be relatively limited. Therefore, it is

thought that the RXRYRZ gate may perform better

than the RYRYRY gate because it allows for a wider

variety of state transformations, giving quantum

operations more flexibility.

5.2 Discussion of comparison 2
As shown in Table I and Fig. 3, the RYRYCX gate

outperforms the RYRYRY gate. From these results,

we can see that for the same number of gates, the

combination of rotating gates and CX outperforms

rotating gates alone. The RYRYCX gate consists of

the application of the CX gate in addition to the

rotation gate that continues to rotate in one direction

only. The CX gate represents an interaction between

two quantum bits, where the state of one quantum

bit applies a rotation to the other. This interaction can

be made complex, resulting in the formation of

quantum entanglement between the quantum bits.

Quantum entanglement represents the interdependence

between quantum states and is a very powerful tool

in quantum computation. Entangled qubits are

strongly connected to each other, and a measurement

of one qubit affects the state of the other qubits. It

makes it possible to perform complex quantum

computations. Therefore, the RYRYCX gate performs

better than the RYRYRY gate because the CX gate

allows quantum entanglement to form, allowing for

more complex and powerful quantum interactions.

5.3 Discussion of comparison 3
As shown in Table I and Fig. 4, the RXRYRZCX

gate outperforms the RYRYRYCX gate. These results

show that for the same number of gates, combinations

of gates rotated in multiple directions and

(a)

(b)

Fig. 5. Experiment result of comparison 2: (a) Accuracy,
(b) Loss.
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combinations of gates with CX outperform

combinations of gates with a single direction of

rotation and CX. The RXRYRZCX gate consists of

a rotation gate that continues to rotate in various

directions, plus a CX gate. This interaction is more

complex and can lead to the formation of quantum

entanglement between quantum bits, which is why the

RXRYRZCX gate outperforms the RYRYRCX gate.

5.4 Discussion of comparison 4
As shown in Table I and Fig. 5, the RYRYCXCX

gate outperforms the RYRYCX gate. While the

RYRYCX gate already uses one CX gate, the

RYRYCXCX gate uses two consecutive CX gates. It

further complicates the interactions between the

quantum bits and strengthens the quantum

entanglement. The two CX gate operations make the

quantum bits physically more strongly connected and

interacting, which allows for more complex quantum

states to form. Therefore, the RYRYCXCX gate

performs better than the RYRYCX gate because it

contains more CX gates, strengthening the quantum

entanglement between the quantum bits and making

their interactions more complex.

Ⅵ. Conclusions and future work 

This paper presents an introduced and assessed

experimental investigation involving gate

diversification to ascertain the pivotal quantum gate

within the array of options offered by PQCs, thereby

enhancing the efficacy of QNNs. Through four

comprehensive comparative analyses encompassing

six quantum gate variations, it has been discerned that

heightened gate complexity correlates with increased

employment of using various rotation gates and CX

gates, subsequently leading to strengthened

entanglement and consequent performance

enhancement.

In future work, we will conduct experiments with

more diverse gates. In addition, we will proceed with

improved performance through more sophisticated

gate combinations. Moreover, we will analyze the

strengths and weaknesses of related work and conduct

studies to improve them. Furthermore, we will expand

the validated understanding of quantum gate

performance to encompass a wider range of quantum

applications, including QFL and other diverse fields

that rely on QNN.
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